A Fibonacci-like Sequence of Composite Numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fibonacci-like Sequence of Composite Numbers

In 1964, Ronald Graham proved that there exist relatively prime natural numbers a and b such that the sequence {An} defined by An = An−1 +An−2 (n ≥ 2;A0 = a,A1 = b) contains no prime numbers, and constructed a 34-digit pair satisfying this condition. In 1990, Donald Knuth found a 17-digit pair satisfying the same conditions. That same year, noting an improvement to Knuth’s computation, Herbert ...

متن کامل

A New Kind of Fibonacci-Like Sequence of Composite Numbers

An integer sequence (xn)n≥0 is said to be Fibonacci-like if it satisfies the binary recurrence relation xn = xn−1 + xn−2, n ≥ 2. We construct a new type of Fibonacci-like sequence of composite numbers. 1 The problem and previous results In this paper we consider Fibonacci-like sequences, that is, sequences (xn) ∞ n=0 satisfying the binary recurrence relation xn = xn−1 + xn−2, n ≥ 2. (1)

متن کامل

A Tribonacci-Like Sequence of Composite Numbers

We find a new Tribonacci-like sequence of positive integers 〈x0, x1, x2, . . .〉 given by xn = xn−1 + xn−2 + xn−3 , n ≥ 3, and gcd(x0, x1, x2) = 1 that contains no prime numbers. We show that the sequence with initial values x0 = 151646890045, x1 = 836564809606, x2 = 942785024683 is the current record in terms of the number of digits.

متن کامل

A Farey Sequence of Fibonacci Numbers

The Farey sequence is an old and famous set of fractions associated with the integers. We here show that if we form a Farey sequence of Fibonacci Numbers, the properties of the Farey sequence are remarkably preserved (see [2]). In fact we find that with the new sequence we are able to observe and identify "points of symmetry/' "intervals," "generating fractions" and "stages." The paper is divid...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 1999

ISSN: 1077-8926

DOI: 10.37236/1476